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Bioinformatics: Definition & Utility
Bioinformatics: broadly defined study of living systems (bio) using computational (informatics) tools
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Bioinformatics (BI): applied science that interprets biological data using development and
advancements in other sciences to solve many important medical and biological problems.



COVID-19 Pandemics

COVID-19 (2019-2022) ~ 6.5M (0.1%) global population died
Spanish flu (1918-1920) ~50.0M (2.5%) global population died
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Bioinformatics was crucial in vaccine and anti-COVID 19 drugs development!



Development of individual & effective treatments

Current: drugs designed using data from selected Goal: diagnosis of individual patients & treatment
having many side effects and are often ineffective. with most effective drugs and without side effects.
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Bioinformatics is playing a major role in sequencing and analyzing individual
genomes and in research developing personalized drugs and therapies!



Helping with increasing and ageing population

Total world population is constantly growing and many developed societies are aging, negatively affecting economic growth .
This forces governments to increase the retirement age, while keeping ‘older’ workers healthy and productive.
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Bioinformatics is playing a major in helping to develop strategies to help
handle increasing world population and is important in ageing research!
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Today we will talk about long non-coding RNAs...

IncRNAs : transcripts longer than 200 & without protein coding potential.

Features of long non-coding RNAs

transcribed mostly by RNA polymerase |l

many are capped, spliced and polyadenylated

very abundant in mammalian genomes
poor sequence conservation across species
nearby by the same mRNA across species

lowly expressed & highly cell type specific

Most human/mouse genes are non-coding

Miscellaneous
551 (0.95%)

Pseudogenes
14650 (25.18%) Protein coding

19950 (34.29%)

Small noncoding
RNAs

7258 (12.48%) LncRNAs

15767 (27.1%)

Mouse Genome Database (Gencode)
showing different classes of mouse genes.



Selected IncRNAs show diverse regulatory functions

IncRNAs can function in a variety of molecular process including regulation in cancer.
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IncRNAs are NOT studied enough...

~5% known functional IncRNAs: tip of the iceberg?
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At the above rate, functional annotations .
of all IncRNAs would be completed ~2110. or more functions?



FANTOM: Functional Annotation of Mammalian Genomes

Worldwide Genomic Consortium led by RIKEN Yokohama since 2000
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FANTOM Consortium 2017 Summer Meeting:
Cracking mysteries of human IncRNAs
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FANTOM 5: Computational Atlas of IncRNA Functions

&5 FANTOM CAT (CAGE Associate Transcriptome) of 27,919 human IncRNAs:
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Position from Gene Start (op) 67% of all human IncRNAs (19,175/27,919)
Hon, Ramilowski, et al. Nature 543, 2017 show various functionally relevant traits.
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FANTOM 6: Functional Screenings of IncRNAs

1. Unbiased selection of 600+ IncRNAs: 2. Antisense Oligo (ASO) knockdown mechanism:

* Induced Pluripotent Stem Cells (~300 IncRNAS)
* Human Dermal Fibroblasts (~300 IncRNAs)
« other cell types (more limited)

N
o
S

o
3
3

0.50

Dermal fibroblasts specificity
o
N
)]

CAGE expression, log;(TPM + 1)

.FAmISMAgAT. El)r;ErReSi\esd .Lirlg[e\]t/-e\g . cytoplasmic (108) . chromatin bound (98) ‘ nuclear soluble (76)
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Ramilowski, Yip, et al. Genome Res. 30,1060, 2020

ASO is ~12-18 nt long DNA sequence
designed to bind to a selected RNA transcripts
more

IncRNA transcript model
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FANTOM 6: Human Dermal Fibroblast study overview
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~30% IncRNAs Regulate Cell Growth & Morphology

1. Distinct cell morphologies changes 3. IncRNAs can regulate multiple morphologies
(example: three selected IncRNAs) (all IncRNA in HDF data)
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Ramilowski, Yip, et al. Genome Res. 30:1060, 2020



IncRNAs show diverse molecular signatures of functions

Molecular functions of IncRNAs, were inferred by comparing transcriptome after each
ASO KD targeting one IncRNA with the transcriptome of matching negative controls.
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IncRNA ASO KDs showed a wide ranged of DE genes (left) & dysregulated pathways
(right). Overall ~20% IncRNAs show biological function signatures.

Ramilowski, Yip, et al. Genome Res. 30, 1060, 2020
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Dendritic Cells: Function & Differentiation

DCs: are professional Antigen Presenting Cells priming regulatory and cytotoxic T-cells
to orchestrate a variety of adaptive immune responses upon infection and in cancers.

DCs differentiate mainly in bone marrow and mature in spleen in an IRF8-dependent manner.

B8 B e

P pre-cDC1

LMPP re cDCU
cDC2

Early Progenitors DC Progenitors Mature Cells

3. CDP: Common Dendritic Cell Progenitors
4. pre-cDC1/pre-cDC2: pre-Dendritic Cells
5. cDC1/cDC2: classical Dendritic Cells

1. LMPP: Lymphoid-Myeloid Primed Progenitors
2. MDP: Monocyte Dendritic Cell Progenitors

How can we find IncRNA expression in our data?



nfcore £ RNA-seq Data Analysis Pipelines

A community effort to call tof analysis pipelines bult

Growing & diverse NGS data is NOT only a challenge for the hardware, but also requires Bl pipelines to process and analyze
the data reliably and reproducible using the best standards in the field.

nf-core is collection of 86 pipelines developed first at the Genome Institute of Sweden to process essentially any NGS data
on Amazon Cloud or on own server. Anybody can develop a nf-core pipeline if it complies with the standards.

Pipeline summary ]

o . B 88

cat UMI-tools Salmon SAMtools
(sort, index,
@ fastq extract FastQC SortMeRNA HI%TZ Bt S
Trim BBSplit dedup
Galore! Salmon picard 4 R T
@ MarkDuplicates
MultiQc BEDtools

License:@ ®

nf-core/ =
rnaseq

genomecov

=

StringTie

STAGE METHOD MultiQC  dupRadar PRECY

1. Pre-processing mmmmm  Aligner: STAR, Quantification: Salmon (default) @

2. Genome alignment & quantification wmmsm Aligner: STAR, Quantification: RSEM DESeq2 Qualimap RSeQC

3. Pseudo-alignment & quantification Aligner: HISAT2, Quantification: None (PCA only) rnaseq (multiple

4. Post-processing msmmm Pseudo-aligner: Salmon, Quantification: Salmon modules) \

5. Final QC ge.__ 4 3¢ b

Server: 2x2TB RAM / 240CPUs
https://nf-co.re
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We found thousands of IncRNA specific to DC differentiation

de-novo gene assembly: applying nf-core & own bioinformatics pipelines to RNA-seq in-vivo
data we found~6,000 novel IncRNAs in cDC differentiation time-course.
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IncRNAs are much more cell type specific than mRNAs

When plotting scaled across cell types expression (Z-score) of IncRNA (left) & mRNAs (right) across

differentiation data we notice more restricted patterns of IncRNA expression.
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Let’s focus on DC1 specific mRNAs and IncRNA:s.



cDC1-specific mMRNAs & IncRNAs form a co-regulatory network

Differential expression analysis and clustering identified 151 IncRNAs and 711 mRNAs
specific to cDC1. We next looked at their expression profiles across cDC1 differentiation.
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(Heatmap is symmetrized)

Many cDC1-specific IncRNA & mRNAs form a highly-correlated expression network in cDC1
differentiation. Usually, such quilt by association suggests that genes have commonly regulated.
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Making cDC1-specific protein landscape starts in early progenitors

Dendritic cells develop & establish their functional protein landscape following:
(1) chromatin activation, (2-3) chromatin structure establishment, (4) expression of specific mRNAs.
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signal PC1 interaction expression
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acetylation change interaction and gene induction
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Kurotaki et al, Tamura, PNAS, 2022
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e-IncRNAs are widely transcribed from enhancer regions

We made predictions of potential enhancers regulating cDC1-specific mRNAs.
We found that Many enhancers transcribe e-IncRNAs.
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Contact map of cDC1 enhancer regions predicted to
regulate cDC1-specific mRNAs and transcribing e-IncRNAs.
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Although it is premature to conclude that e-IncRNA transcription has regulatory
functions in ¢cDC1 differentiation, yet it is worth further investigating:
e-IncRNA DNA, RNA & protein binding motifs, structures, cellular localizations, etc..



Summary

Collectively, Inc-RNAs are widely expressed in a variety of cell types, yet many are
restricted to a few cell types making their studies hard.

Evidence for widespread functions of IncRNAs is growing, yet far majority of
IncRNAs remain functionally uncharacterized.

Inc-RNA form co-expressed networks with mRNAs in cDC1 differentiation, yet we
still do not know what exactly their roles are

Many enhancers regions express e-IncRNAs — need to be further investigated
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