FY2023 Current Trends in Bioinformatics

Lecture 2

Long non-coding RNAs: Genomic Junk or Regulatory Treasure?

Jordan RAMILOWSKI, PhD

Bioinformatics Associate Professor

23-10-2023

Jordan RAMILOWSKI

Yokohama City University 2020→

Bioinformatics Associate Professor (バイオインフォマティクス 准教授) [long non-coding RNAs, cell differentiation, cell-cell communication, enhancers, and more]

RIKEN Yokohama IMS 2011→

Postdoctoral Researcher/Research Scientist 2011−2020 Visiting Scientist 2020→

Bioinformatics: Definition & Utility

Bioinformatics: broadly defined study of living systems (bio) using computational (informatics) tools

Bioinformatics (BI): **applied science** that interprets biological data using development and advancements in other sciences to **solve many important medical and biological problems**.

COVID-19 Pandemics

COVID-19 (2019-2022) \sim 6.5M (0.1%) global population died Spanish flu (1918-1920) \sim 50.0M (2.5%) global population died

Bioinformatics was crucial in vaccine and anti-COVID 19 drugs development!

Development of individual & effective treatments

Current: drugs designed using data from selected having many side effects and are often ineffective.

Goal: diagnosis of individual patients & treatment with most effective drugs and without side effects.

Ineffective Drugs:

Antidepressants	38 %	<u>^^^^</u>
Asthma	40 %	^ † † † † † † † † † † † †
Diabetes	43 %	^^^^^^
Arthritis	50 %	^ † † † † † † † † † † †
Alzheimer	70 %	**** ****
Cancer	75 %	^ † † † † † † † † † †

[→] Each patient benefits from an individualized treatment.

Bioinformatics is playing a major role in sequencing and analyzing individual genomes and in research developing personalized drugs and therapies!

Helping with increasing and ageing population

Total world population is constantly growing and many developed societies are aging, negatively affecting economic growth . This forces governments to increase the retirement age, while keeping *'older'* workers healthy and productive.

Bioinformatics is playing a major in helping to develop strategies to help handle increasing world population and is important in ageing research!

Today we will talk about long non-coding RNAs...

IncRNAs : transcripts longer than 200 & without protein coding potential.

Features of long non-coding RNAs

- transcribed mostly by RNA polymerase II
- many are capped, spliced and polyadenylated
- very abundant in mammalian genomes
- poor sequence conservation across species
- nearby by the same mRNA across species
- lowly expressed & highly cell type specific

Most human/mouse genes are non-coding

Mouse Genome Database (Gencode) showing different classes of mouse genes.

Selected IncRNAs show diverse regulatory functions

IncRNAs can function in a variety of molecular process including regulation in cancer.

Salehi S. et al., Journal of Cellular and Molecular Medicine 21, 3120, (2017)

IncRNAs are NOT studied enough...

At the above rate, functional annotations of all IncRNAs would be completed ~2110.

Transcriptional noise or more functions?

FANTOM: Functional Annotation of Mammalian Genomes

Worldwide Genomic Consortium led by RIKEN Yokohama since 2000

FANTOM Consortium 2017 Summer Meeting: Cracking mysteries of human IncRNAs

FANTOM 5: Computational Atlas of IncRNA Functions

FANTOM CAT (CAGE Associate Transcriptome) of 27,919 human IncRNAs: ~10,000 CAGE/RNA-seq expression profiles + Epigenome Data + Annotations

Hon, Ramilowski, et al. *Nature* 543, 2017

67% of all human lncRNAs (19,175/27,919) show various functionally relevant traits.

UNF 16 3,135,000-3,128,500 (ZIVE213-AST)

FANTOM 6: Functional Screenings of IncRNAs^{2 KD}

1. Unbiased selection of 600+ IncRNAs:

- Induced Pluripotent Stem Cells (~300 IncRNAs) ٠
- Human Dermal Fibroblasts (~300 IncRNAs) .
- other cell types (more limited) •

2. Antisense Oligo (ASO) knockdown mechanism:

- ASO is ~12-18 nt long DNA sequence
- designed to bind to a selected RNA transcripts

313 kb

313.1 kb

more

VARIABLE EXPRESSION LEVELS (CAGE EXPRESSION DATA)

62% NUCLEAR & 38% CYTOPLASMIC (CELL RNA FRACTIONATION DATA)

NUC 8

IncRNA transcript model ASO03 ASO05 ASO₀₆ ASO₀₁ ASO₀₂ Transcription

FANTOM 6: Human Dermal Fibroblast study overview

~30% IncRNAs Regulate Cell Growth & Morphology

1. Distinct cell morphologies changes

(example: three selected lncRNAs)

2. Morphology imaging processing using AI (example: one novel IncRNA target)

3. IncRNAs can regulate multiple morphologies (all IncRNA in HDF data)

Ramilowski, Yip, et al. Genome Res. 30:1060, 2020

IncRNAs show diverse molecular signatures of functions

Molecular functions of IncRNAs, were inferred by comparing transcriptome after each ASO KD targeting one IncRNA with the transcriptome of matching negative controls.

IncRNA ASO KDs showed a wide ranged of DE genes (left) & dysregulated pathways (right). Overall ~20% IncRNAs show biological function signatures.

Ramilowski, Yip, et al. Genome Res. 30, 1060, 2020

Dendritic Cells: Function & Differentiation

DCs: are professional Antigen Presenting Cells priming regulatory and cytotoxic T-cells to orchestrate a variety of adaptive immune responses upon infection and in cancers.

DCs differentiate mainly in bone marrow and mature in spleen in an IRF8-dependent manner.

LMPP: Lymphoid-Myeloid Primed Progenitors
MDP: Monocyte Dendritic Cell Progenitors

CDP: Common Dendritic Cell Progenitors
pre-cDC1/pre-cDC2: pre-Dendritic Cells
cDC1/cDC2: classical Dendritic Cells

How can we find IncRNA expression in our data?

nf-core 1 RNA-seq Data Analysis Pipelines

Growing & diverse NGS data is NOT only a challenge for the hardware, but also requires BI pipelines to process and analyze the data reliably and reproducible using the best standards in the field.

nf-core is collection of 86 pipelines developed first at the Genome Institute of Sweden to process essentially any NGS data on Amazon Cloud or on own server. Anybody can develop a nf-core pipeline if it complies with the standards.

Pipeline summary BAM BAI GTF FASTA RSEM STAR Salmon SAMtools cat UMI-tools (sort, index, SortMeRNA fastq extract FastQC HISAT2 stats) UMI-tools dedup BBSplit Fast0C Trim Galore! picard Salmon HTML MarkDuplicates MultiOC BEDtools genomecov License:@ nf-core/ 👚 BIGWIG bedGraphToBigWig TSV StringTie rnaseq MultiQC dupRadar Preseg STAGE METHOD HTML Aligner: STAR, Quantification: Salmon (default) 1. Pre-processing DESea2 Qualimap RSeQC 2. Genome alignment & quantification Aligner: STAR, Quantification: RSEM 3. Pseudo-alignment & quantification Aligner: HISAT2, Quantification: None (PCA only) rnaseq (multiple 4. Post-processing Pseudo-aligner: Salmon, Quantification: Salmon modules) 5. Final QC

Server: 2x2TB RAM / 240CPUs

https://nf-co.re

We found thousands of IncRNA specific to DC differentiation

de-novo gene assembly: applying nf-core & own bioinformatics pipelines to RNA-seq in-vivo data we found~6,000 novel IncRNAs in cDC differentiation time-course.

IncRNAs are much more cell type specific than mRNAs

When plotting scaled across cell types expression (Z-score) of IncRNA (left) & mRNAs (right) across differentiation data we notice more restricted patterns of IncRNA expression.

Let's focus on DC1 specific mRNAs and lncRNAs.

cDC1-specific mRNAs & IncRNAs form a co-regulatory network

Differential expression analysis and clustering identified 151 lncRNAs and 711 mRNAs specific to cDC1. We next looked at their expression profiles across cDC1 differentiation.

Many **cDC1-specific IncRNA & mRNAs form a highly-correlated expression network** in cDC1 differentiation. **Usually, such quilt by association suggests that genes have commonly regulated.**

Making cDC1-specific protein landscape starts in early progenitors

Dendritic cells develop & establish their functional protein landscape following:

(1) chromatin activation, (2-3) chromatin structure establishment, (4) expression of specific mRNAs.

Kurotaki et al, Tamura, PNAS, 2022

e-IncRNAs are widely transcribed from enhancer regions

We made predictions of potential enhancers regulating cDC1-specific mRNAs. We found that Many enhancers transcribe e-IncRNAs.

Contact map of cDC1 enhancer regions predicted to regulate cDC1-specific mRNAs and transcribing e-lncRNAs.

Although it is premature to conclude that e-IncRNA transcription has regulatory functions in cDC1 differentiation, yet it is worth further investigating: e-IncRNA DNA, RNA & protein binding motifs, structures, cellular localizations, etc..

Summary

- 1. Collectively, Inc-RNAs are widely expressed in a variety of cell types, yet many are restricted to a few cell types making their studies hard.
- 2. Evidence for widespread functions of IncRNAs is growing, yet far majority of IncRNAs remain functionally uncharacterized.
- 3. Inc-RNA form co-expressed networks with mRNAs in cDC1 differentiation, yet we still do not know what exactly their roles are
- 4. Many enhancers regions express e-IncRNAs need to be further investigated